skip to main content


Search for: All records

Creators/Authors contains: "Offringa, A. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the largest low frequency (120 MHz) arcminute resolution image of the radio synchrotron background (RSB) to date, and its corresponding angular power spectrum of anisotropies (APS) with angular scales ranging from 3° to 0.3 arcmin. We show that the RSB around the north celestial pole has a significant excess anisotropy power at all scales over a model of unclustered point sources based on source counts of known source classes. This anisotropy excess, which does not seem attributable to the diffuse Galactic emission, could be linked to the surface brightness excess of the RSB. To better understand the information contained within the measured APS, we model the RSB varying the brightness distribution, size, and angular clustering of potential sources. We show that the observed APS could be produced by a population of faint clustered point sources only if the clustering is extreme and the size of the Gaussian clusters is ≲1 arcmin. We also show that the observed APS could be produced by a population of faint diffuse sources with sizes ≲1 arcmin, and this is supported by features present in our image. Both of these cases would also cause an associated surface brightness excess. These classes of sources are in a parameter space not well probed by even the deepest radio surveys to date.

     
    more » « less
  2. ABSTRACT We present the first targeted measurement of the power spectrum of anisotropies of the radio synchrotron background, at 140 MHz, where it is the overwhelmingly dominant photon background. This measurement is important for understanding the background level of radio sky brightness, which is dominated by steep-spectrum synchrotron radiation at frequencies below ν ∼ 0.5 GHz and has been measured to be significantly higher than that produced by known classes of extragalactic sources and most models of Galactic halo emission. We determine the anisotropy power spectrum on scales ranging from 2° to 0.2 arcmin with Low-Frequency Array observations of two 18-deg2 fields – one centred on the Northern hemisphere’s coldest patch of radio sky where the Galactic contribution is smallest and the other offset from that location by 15°. We find that the anisotropy power is higher than that attributable to the distribution of point sources above 100 $\mu$Jy in flux. This level of radio anisotropy power indicates that if it results from point sources, those sources are likely at low fluxes and incredibly numerous, and likely clustered in a specific manner. 
    more » « less